Problem: filter(cons(X),0(),M) -> cons(0()) filter(cons(X),s(N),M) -> cons(X) sieve(cons(0())) -> cons(0()) sieve(cons(s(N))) -> cons(s(N)) nats(N) -> cons(N) zprimes() -> sieve(nats(s(s(0())))) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {7,6,5,4} transitions: sieve1(12) -> 7* nats1(11) -> 12* s1(10) -> 11* s1(2) -> 9* s1(9) -> 10* s1(1) -> 9* s1(3) -> 9* 01() -> 9* cons1(2) -> 6,4 cons1(9) -> 5,4 cons1(1) -> 6,4 cons1(3) -> 6,4 cons2(16) -> 7* cons2(11) -> 12* s2(10) -> 16* filter0(1,1,1) -> 4* filter0(1,3,1) -> 4* filter0(1,2,3) -> 4* filter0(2,2,1) -> 4* filter0(2,1,3) -> 4* filter0(2,3,3) -> 4* filter0(3,1,1) -> 4* filter0(1,1,2) -> 4* filter0(3,3,1) -> 4* filter0(1,3,2) -> 4* filter0(3,2,3) -> 4* filter0(2,2,2) -> 4* filter0(3,1,2) -> 4* filter0(3,3,2) -> 4* filter0(1,2,1) -> 4* filter0(1,1,3) -> 4* filter0(1,3,3) -> 4* filter0(2,1,1) -> 4* filter0(2,3,1) -> 4* filter0(2,2,3) -> 4* filter0(3,2,1) -> 4* filter0(1,2,2) -> 4* filter0(3,1,3) -> 4* filter0(3,3,3) -> 4* filter0(2,1,2) -> 4* filter0(2,3,2) -> 4* filter0(3,2,2) -> 4* cons0(2) -> 1* cons0(1) -> 1* cons0(3) -> 1* 00() -> 2* s0(2) -> 3* s0(1) -> 3* s0(3) -> 3* sieve0(2) -> 5* sieve0(1) -> 5* sieve0(3) -> 5* nats0(2) -> 6* nats0(1) -> 6* nats0(3) -> 6* zprimes0() -> 7* problem: Qed