Problem:
filter(cons(X),0(),M) -> cons(0())
filter(cons(X),s(N),M) -> cons(X)
sieve(cons(0())) -> cons(0())
sieve(cons(s(N))) -> cons(s(N))
nats(N) -> cons(N)
zprimes() -> sieve(nats(s(s(0()))))
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {7,6,5,4}
transitions:
sieve1(12) -> 7*
nats1(11) -> 12*
s1(10) -> 11*
s1(2) -> 9*
s1(9) -> 10*
s1(1) -> 9*
s1(3) -> 9*
01() -> 9*
cons1(2) -> 6,4
cons1(9) -> 5,4
cons1(1) -> 6,4
cons1(3) -> 6,4
cons2(16) -> 7*
cons2(11) -> 12*
s2(10) -> 16*
filter0(1,1,1) -> 4*
filter0(1,3,1) -> 4*
filter0(1,2,3) -> 4*
filter0(2,2,1) -> 4*
filter0(2,1,3) -> 4*
filter0(2,3,3) -> 4*
filter0(3,1,1) -> 4*
filter0(1,1,2) -> 4*
filter0(3,3,1) -> 4*
filter0(1,3,2) -> 4*
filter0(3,2,3) -> 4*
filter0(2,2,2) -> 4*
filter0(3,1,2) -> 4*
filter0(3,3,2) -> 4*
filter0(1,2,1) -> 4*
filter0(1,1,3) -> 4*
filter0(1,3,3) -> 4*
filter0(2,1,1) -> 4*
filter0(2,3,1) -> 4*
filter0(2,2,3) -> 4*
filter0(3,2,1) -> 4*
filter0(1,2,2) -> 4*
filter0(3,1,3) -> 4*
filter0(3,3,3) -> 4*
filter0(2,1,2) -> 4*
filter0(2,3,2) -> 4*
filter0(3,2,2) -> 4*
cons0(2) -> 1*
cons0(1) -> 1*
cons0(3) -> 1*
00() -> 2*
s0(2) -> 3*
s0(1) -> 3*
s0(3) -> 3*
sieve0(2) -> 5*
sieve0(1) -> 5*
sieve0(3) -> 5*
nats0(2) -> 6*
nats0(1) -> 6*
nats0(3) -> 6*
zprimes0() -> 7*
problem:
Qed